
https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby

kontent.ai 
 1 of 3

Build static sites with Kontent.ai
October 26, 2022 Martina Farkasova 7 min read JavaScript  

But of course, running a static site has its disadvantages as well. Serving static pre-rendered

content usually means that you cannot tailor the experience on your site for each and every
user. If serving real-time data and dynamic experience is a must for your site, dynamic sites are
the way to go.

Speed – An absence of the database makes the static site much more speedy and easier to
load. All the server needs to do is return a file back to the user. There is no need for
database queries, no client-server requests to process. Static site generators store a pre-
built version of the site that can be delivered nearly instantly.

Less complexity – To build a dynamic site, you would need HTML, CSS, and JavaScript on
the front end, a server-side scripting language, such as PHP or Perl, on the back end, and
SQL to run a database. To build a static site, all you need are front end languages and a
templating language on top of that.

Security – Every request for a web page made to a dynamic site causes an application to
run and fetch content from a database. This creates a high risk of the site being attacked
and the data being stolen. With a static site, security is the job of the web server. A static
site using a CDN is practically immune to attacks because even if one web server on the
CDN network goes down from an attack, other servers are still available. And since static
sites don't process user data, there is no data to be stolen.

Scalability – Unexpected traffic surges might crash a dynamic site. A static site is much
better prepared as delivering static pages consumes very little server resources. Basic static
sites with HTML files can be easily scaled up by just increasing the bandwidth. 

SEO – Load time speed is crucial to get ranked higher by search engines. And your static
site will always be faster than dynamically generated websites. Also, static content is easier
to parse by the web crawlers.

Hosting and cost – HTML files for your static site can be served anywhere, scaled and
migrated as needed. Plus, the files require less space making the hosting of static websites
cheaper to that of dynamic sites.

Static site generators (SSG) take the prepared content, typically stored in flat files, apply it

against templates, and generate a structure of static HTML files, ready to be delivered to your
visitors. When compared to dynamic websites, they come with several advantages:

Benefits of static site generators

Choose your favorite technology and see what tools are available to you out of the box. And if
you're still a bit uncertain whether static sites are the way to go, check out the main benefits
SSGs have to offer.

If you’re looking to launch a static, secure, and speedy website, you may be considering a static
site generator (SSG). In combination with the JAMstack  approach and a headless CMS to store
your content, you're on the way to success.

https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby
https://kontent.ai/
https://kontent.ai/blog/the-rise-of-jamstack


https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby

kontent.ai 
 2 of 3

Gatsby is a React-based static site generator that uses GraphQL for manipulating data. You can
connect Gatsby to your Kontent.ai project in two ways.

1. The Gatsby source plugin for Kontent.ai  (available as the  @kentico/gatsby-source-kontent  

npm package) retrieves data from the Delivery REST API to build static sites using Gatsby .

2. The native Delivery GraphQL API lets you query data from your Kontent.ai project. Connect
it to your Gatsby app using a Gatsby source plugin .

To find out more details and learn about best practices of working with Gatsby, have a look at

Next.js  is an open-source React framework you can use to achieve consistency by building a
static site for visitors and a server-rendered preview for content creators. Here are some

resources to help you get started quickly:

React-based static site generators

Leverage GraphQL with Gatsby

There's also the @kentico/gatsby-kontent-components   npm package that contains React
components useful when processing Kontent.ai data.

Gatsby guide  – a guide on how to quickly source content for your Gatsby site,

Gatsby showcases  – examples how to implement navigation and how to resolve inline
images, components, and content items inside a rich text element.

Using Web Spotlight?

Learn how to implement Web Spotlight using Gatsby Starter  to create blazing fast
websites.

Create static and dynamic Jamstack sites with Next.js

An interactive tutorial  to build a Next.js app.

The official showcase  of a Next.js site that uses Kontent.ai as a data source.

To make sure you're completely of the hook from updating the content on your site, you can use
webhooks to help you set up a tool that will pull content via Kontent.ai APIs and generate a new
static site whenever content has changed within the CMS.

You might be OK with editing text files in Markdown format every time something on your site

needs to change. But what about your less tech-savvy coworkers? Adding a headless CMS to the
mix makes collaborating during content creation a breeze for the whole team. And not only that,
you gain a proper workflow, role permissions, and all the benefits of structured content that a
simple text file just can't offer.

Static site generators help you create lightweight, fast-performing, and secure websites. Using
an SSG alone, however, has its limitations.

Combining the best of both worlds

https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby
https://kontent.ai/
https://github.com/Kentico/kontent-gatsby-packages
https://www.npmjs.com/package/@kentico/gatsby-source-kontent
https://kontent.ai/learn/reference/delivery-api/
https://www.gatsbyjs.com/guides/kentico-kontent/
https://kontent.ai/learn/reference/delivery-graphql-api/
https://www.gatsbyjs.com/docs/how-to/sourcing-data/sourcing-from-private-apis/
https://kontent.ai/technologies/nextjs
https://www.npmjs.com/package/@kentico/gatsby-kontent-components
https://www.gatsbyjs.org/docs/sourcing-from-kentico-kontent/
https://github.com/Kentico/kontent-gatsby-packages#examples
https://github.com/Kentico/gatsby-starter-kontent-lumen/blob/master/docs/WEB-SPOTLIGHT.md#implementing-web-spotlight
https://nextjs.org/learn/basics/create-nextjs-app
https://github.com/vercel/next.js/tree/canary/examples/cms-kontent
https://kontent.ai/learn/tutorials/develop-apps/integrate/webhooks/
https://kontent.ai/learn/reference/kontent-apis-overview/
https://kontent.ai/learn/tutorials/manage-kontent-ai/roles-and-workflow/manage-workflows/
https://kontent.ai/learn/tutorials/manage-kontent-ai/roles-and-workflow/permission-reference/
https://kontent.ai/learn/tutorials/write-and-collaborate/structure-your-content/structure-your-content/


https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby

kontent.ai 
 3 of 3

What's next?
See available JavaScript-based SDKs to develop Kontent.ai-powered apps.

See how to make your static site dynamic  by providing dynamic functionality delivered via
serverless functions.

Get your content model ready for Jamstack  by following three basic principles.

Check the Gatsby starters  library with templates based on Kontent.ai.

Learn how to personalize static sites  using Kontent.ai and Pardot.

The Kontent.ai Nuxt.js module  is a module for using the Delivery JavaScript SDK to create
static generated Vue.js applications with Nuxt.js . Nuxt.js is a progressive framework built with
Vue.js that lets you build production-ready web apps.

The Kontent.ai source plugin for Gridsome  allows you to work with Kontent.ai as your content
source to build static sites using Gridsome . Gridsome is a Vue-powered static site generator
for building blazing fast static websites. It is data-driven meaning it uses a GraphQL layer to get

data from different sources in order to dynamically generate pages from it.

Vue-based static site generators

A guide to image optimization  with the Next image component.

https://kontent.ai/learn/tutorials/develop-apps/optimize-your-app/static-sites/?tech=ruby
https://kontent.ai/
https://kontent.ai/learn/tutorials/develop-apps/overview/?tech=javascript
https://www.freecodecamp.org/news/how-to-make-static-site-dynamic/
https://kontent.ai/content-modeling-hub/can-you-effectively-future-proof-your-content-model-for-jamstack
https://www.gatsbyjs.org/starters/?c=CMS%3AKontent
https://kontent.ai/blog/static-site-personalization
https://github.com/Domitnator/kentico-kontent-nuxt-module
https://kontent.ai/learn/tutorials/develop-apps/overview/?tech=javascript
https://nuxtjs.org/docs/
https://gridsome.org/plugins/@meeg/gridsome-source-kentico-kontent
https://gridsome.org/docs/
https://meeg.dev/blog/using-the-next-image-component-with-kentico-kontent-assets

